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1 Introduction

Since the topic of choice is quite specific, this essay will begin with a breakdown of

the research question. Constrained 2D particle-based systems comprise of a particle system

and a set of constraints. Essentially, they are 2D physics simulations where the particles

are “atoms”, and the constraints are “bonds”. Firstly, a particle-based system consists of a

group of free-moving circles that can travel across a 2D plane. These particles (circles) have a

defined radius, mass, position, velocity, and force. Moreover, particles can also interact with

the surrounding given pre-defined conditions. Constraints are the pre-defined mathematical

conditions that control how the particles behave, just like how a string defines the path of

a pendulum. It is possible to have multiple constraints, and such systems of constraints

can work together to influence the behaviour of the particles. Therefore, a constrained

particle-based system is simply a set of particles that are controlled by a set of constraints.

A double pendulum would be considered a constrained particle system. When visualized,

systems of particles and constraints can form mesh-like objects that react under external

forces (Figure 6). Some examples of common constraints include bend constraints, distance

constraints, and area constraints. The goal of this essay is to establish a method that

applies a mathematical constraint on a set of particles such that the system can also respond

to external forces. Section 2 will formally introduce the fundamental setup of the model.

Later sections will generalize, compare, and analyze the effectiveness of the penalty method

(Equation 23) and relaxed geometric method (Equation 38). Further discussions about the

effectiveness of each method will also be included.

A simple programmatic implementation is provided to help visualize the mathematics

within this essay (Appendix A). All figures are also created by the author.

2



1.1 Notation

x, v, a, F Vector quantities: position, velocity, acceleration, and force

m, r Scalar quantities: mass and radius

Ḟ Time derivative; equivalent to dF
dt

qj,i the ith element of qj

Row vector notation
[x1 x2 . . . xn]T Equivalent to the column form, except it saves space


x1

x2

...

xn



∇qjCj(qj)

The gradient of C in terms of qj,[
∂

∂qj,1
Cj(qj)

∂
∂qj,2

Cj(qj) · · · ∂
∂qj,n

Cj(qj)

]

∇qj,iCj(qj,1, xj,2, ...xj,n)

This examines how each component of qj,i changes in the function
Cj,

∇qj,iCj(qj,1, qj,2, ...qj,n)

Looks at the specific partial derivative with respect to qj,i

∂

∂qj,i
Cj(qj,1, qj,2, ..., qj,n)

x(k−1), x(k), x(k+1) Shows the iterative steps of x from k-1, to k, then to k + 1

Table 1: Explanation of prevalent notation used in the paper
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2 Introduction to Particle-Based Systems

2.1 Particle Systems and Constrained Systems

To keep everything consistent, the aforementioned qualities of constrained particle-

systems will be mathematically abstracted in the following table.

pi A circular geometric object with properties xi, vi, ai,mi, ri, Fi

p
The particle system; a concatenated list of all n particle objects
[ p1 p2 p3 · · · pn ]T (Bender)

Cj

A single constraint function

• Defined by a function Cj such that Cj : Rn → R

• A function input is called a generalized property, qj,i

• The set of all function inputs is called the generalized properties, qj.
There will always be a qj,i that is the stiffness factor, k, such that
k ∈ qj.

• The size of qj is nj = n(qj).

This essay will focus on time-independent constraints, where t /∈ qj (scle-
ronmic). Additionally, all constraints will be written as an equality,

Cj(qj,1, qj,2, qj,3, · · · , qj,n) = 0,

and there will not be inequalities that results in constraint breaking (holo-
nomic). This equation must be satisfied for the constraint to be maintained.

C the concatenated values of all m different constraints [ C1 C2 C3 · · · Cm ]T

Table 2: Mathematical abstraction of the components in a constrained particle system

2.2 Particle System Solvers and Integration Schemes

During the simulation, the constrained particle-system progresses in timesteps, ∆t. This

is visualized as repeated static frames of the particle system after every ∆t amount of time.
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Figure 1: New particle positions after ∆t

To find the displacements on a particle that has some velocity and some force, a set

of kinematic differential equations are required. These set of equations are fundamental in

physics and relate the position, velocity, and acceleration/force.

v = ẋ

a = v̇

F = ma.

(1)

Complex systems are solved by decomposition into a similar form as Equation 1. Numerical

integration is then used to arrive at an approximate solution. For this paper, a predictor-

corrector semi-implicit Euler integration scheme is used.

2.2.1 Semi-Implicit Euler

Semi-implicit Euler is a numerical integration method that approximates the integral of

a function with an algorithmic method. This method will be used to calculate new positions

of the particles. The first step of semi-implicit Euler is Euler approximation. It is an

algorithm that predicts the next position from a point by extending the slope at that point

by a predefined step (Figure 2).
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Figure 2: Visualization of Euler algorithm

Compared to normal Euler, semi-implicit Euler first completes the Euler step on velocity

then uses that new value to approximate the position. According to Equations 1, the slope

of a velocity vs. time curve is the acceleration, a. And the slope of a position vs. time curve

is the velocity, v. Therefore,

v(k+1) = v(k) + a(k)∆t

x(k+1) = x(k) + v(k+1)∆t,

(2)

and when combined,

x(k+1) = x(k) + v(k)∆t+ a(k)∆t2. (3)

Implicit integration schemes solve the system both at the current time and at a future time.

Typically, implicit algorithms are much more stable. At a glance, Equations 2 seem explicit

as the system is solved for the future position x(k+1) after ∆t. This is not entirely true as the

velocity of the current system must be solved first, and that solved result is used to determine

the new position. For lower values of ∆t, error decreases notably and the system is stable

like implicit methods. Whereas for larger values of ∆t, the system becomes unstable like

explicit methods (Liu). Because of this behaviour, this method is described as semi-implicit

in literature.

The traditional Euler algorithm has an error value of O(∆t2) (Fitzpatrick), which is

the truncation error of the algorithm. Since it only accounts for acceleration, any higher

derivatives (jerk, crackle, pop) are truncated as an error. Because semi-implcit Euler is a

degree higher, its corresponding error will be O(∆t3) (Liu).
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2.2.2 Predictor-Corrector

Predictor-Corrector is an algorithmic enhancement that makes semi-implicit Euler more

stable. Predictor-Corrector finds the corrective position displacements based on a predicted

future position, then directly calculates the final velocity impulse with the previous position

(Figure 3).

Figure 3: The predictor-corrector model over 3 iterations

To calculate the predicted position x∗,

x∗ = x(k) + v(k)∆t+ a(k)∆t2.

Then applying the corrective displacement, ∆x(k), on x∗,

x(k+1) = x∗ + ∆x(k).

The final velocity of the particle can be found using v = ∆x
∆t

,

v(k+1) =
x(k+1) − x(k)

∆t
. (4)

Clavet’s paper verifies the efficacy of the Predictor-Corrector model in resolving most over-
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shoot problems caused by extreme forces in the semi-implicit Euler algorithm.

2.2.3 Iterative Gauss-Seidel

The previous sections discuss how the new positions of a single particle is calculated.

To find the set of all displacements, ∆x, that solve the particle system, p, a Gauss-Seidel-

like local iterative solver is used. Local iterative solvers converge to the global solution by

repeatedly calculating the local ∆xi for each pi ∈ p. Local iterative solvers are generally

easier to implement and faster to compute (Jakobsen).

Gauss-Seidel is a divide-and-conquer algorithm that finds the approximate solution by

repeatedly solving simpler counterparts. Since most constraint systems are nonlinear, an

iterative “Gauss-Seidelization” (Gutiérrez) of the Gauss-Seidel algorithm is used. For a

system of constraints φ, this is represented mathematically as,

x
(k+1)
1 = φ1(x

(k)
1 , x

(k)
2 , ..., x(k)

n )

x
(k+1)
2 = φ2(x

(k+1)
1 , x

(k)
2 , ..., x(k)

n )

...

x(k+1)
n = φn(x

(k+1)
1 , x

(k+1)
2 , ..., x(k+1)

n ).

(5)

The system of φ is lower triangular, with the bottom below the diagonal being k + 1 and

the rest being k iterations. In practice, this behaves as if the system updates after each

constraint is solved; the updated value of the solved constraints are used to solve the next

constraints. For a linear system, the rate convergence can be calculated with the spectral

radius, ρ = (cos π
ε+1

)2 (Strang). Where ε is the number of elements in the vector ∆x,

and hence, the number of constraints. Generally, for k iterations, the error is multiplied

by ρk (Strang). Admittedly, this concept is untrue for non-linear systems, but it can still

approximate the expected rate of convergence. As such, the convergence rate also decreases

for non-linear systems as ε increases. However, Gauss-Seidel can also diverge under certain

conditions. (Detailed analysis will be available in Sections 3.3.2 and 4.3.2)

8



2.3 General Solver Algorithm

Combining all of the previous components create a general solver algorithm. Elements of

this solver are influenced by Clavet’s paper. Although this essay explicitly focuses on the

constraint component, other rudimentary features such as collision handling are included for

an enhanced user experience. (Code available in Appendix A)

Algorithm 1 General system solver for constrained particle-based systems

1: // Run solver for every frame
2: loop
3: // Iterate iterationNumberPerFrame times per frame
4: for k ← 0 to iterationNumberPerFrame do
5: for all pi ∈ p do
6: // Update velocity with gravity
7: vi ← vi + g∆t
8: // Update velocity with other external forces
9: vi ← Fi/mi ·∆t
10: //Save current position to previous position
11: xprevi ← xi
12: // Move to predicted position, x*
13: xi ← xi + vi∆t
14: end for
15: // Algorithm 2, Section 3.3
16: applyPenaltyConstraints()
17: // Algorithm 3, Section 4.3
18: applyRelaxedConstraints()
19: // Additional functions for improved user experience
20: resolveParticleInterations()
21: resolveCollisions()
22: // Equation 3: calculate the velocity
23: for all pi ∈ p do
24: vi ← (xi − xprevi )/∆t
25: end for
26: end for
27: end loop
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3 Penalty Constraints (PC)

3.1 Explanation and Generalization

Penalty constraints are a type of constraints that can be used in constrained particle

systems. In essence, PCs treat all constraints as springs. This means that any deviation

from C(q) = 0 will cause a penalty force in the opposite direction of the displacement, just

like a spring (Figure 4).

Figure 4: Penalty Constraint Visualization

The spring-like behaviour can be described using Hooke’s law,

F = −k∆s. (6)

Where k is the spring constant that determines how stiff a spring is, and ∆s is how much

the spring is displaced. However, this system has an obvious problem: penalty forces can

increase greatly for stiff systems with higher spring constants. The excessive force impulses

create large corrective displacements, and when combined with the error of semi-implicit

Euler (Section 2.2.1), can cause the system to quickly become unstable.

As an example, Hooke’s law will be geometrically applied on a distance constraint, where

a pair of constrained particles must be a certain distance apart. Let two particles be con-

strained by length, r, as shown in Figure 5.
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Figure 5: Distance constraint with the PC method

Given F = −k∆s,

F1 = −k(|x1 − x2| − r)
x1 − x2

|x1 − x2|

F2 = k(|x1 − x2| − r)
x1 − x2

|x1 − x2|
,

(7)

where ∆s = |x1 − x2| − r, and x1−x2
|x1−x2| is the direction unit vector. Although the geometric

intuition works, it is not sufficient. Next, a generalization of the penalty method will be

attempted.

Assuming that the constraints behave as springs, it is possible to calculate the energy that

the constraint holds, much like a real spring. The value of this potential energy can then be

used to calculate the force applied on each particle, hence resulting in some displacement. Let

a constraint be Cj(x1, x2, x3, ..., xn, k) = 0, where xi is the position of particle pi. Similarly,

the generalized properties will be qj = [ x1 x2 · · · xn k]T . Then Hooke’s law can be used to

calculate the penalty forces for the constraint. Because the equilibrium position is Cj(qj) = 0,

the deviation will be ∆s = Cj(qj). Therefore, the force will be FCj
= −kCj.

In physics, energy is defined as

E =

sf∫
si

F · ds,
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where [si, sf ] is the interval of displacement that the force F is applied. Consequently, the

force for a penalty constraint will be applied on the displacement interval [0, Cj]. Then the

energy function of constraint Cj will be,

ECj
=

Cj∫
0

FCj
· dCj

Using FCj
= −kCj,

ECj
=

Cj∫
0

−kCj · dCj

= −1

2
kCj · Cj

∣∣∣∣Cj

0

= −1

2
kCj · Cj − 0

ECj
= −1

2
kCj · Cj. (8)

Conversely, the force and energy is related by the formula

Fx =
∂E

∂x
. (9)

Therefore, the force affecting each particle position, xi, will be

Fxi =
∂ECj

∂xi
. (10)

This can be simplified further by substituting in Equation 8,

Fxi = Cj ·
∂Cj
∂xi

. (11)

Because of the predictor-corrector model (Section 2.2.2), a corrective displacement from the

resulting force must be calculated. To do so, the acceleration is first calculated with Newton’s
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Second law, F = ma. Rearranging yields,

a = m−1
i Fxi .

The next step involves discretizing the acceleration, a. Discretization uses the semi-implicit

Euler algorithm (Section 2.2.1) to convert a into ∆x. Recall,

x(k+1) = x(k) + v(k)∆t+ a(k)∆t2.

Then,

∆x(k) = x(k+1) − x(k)

∆x(k) = v(k)∆t+ a(k)∆t2.

In the predictor-corrector model, each corrective displacement caused by a force is indepen-

dent of the particle velocity. Therefore,

∆x = a(k)∆t2.

Using the result from Newton’s Second Law,

∆x = wiFxi∆t
2. (12)

where wi is the inverse mass m−1
i . Then substituting with Equation 11 yields,

∆xi = −wikCj ·
∂Cj
∂xi

∆t2. (13)

To verify the derived formula, it will be applied to the case example stated in Figure 5. The
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mathematical representation of the distance constraint will be

Cj(x1, x2, k) = |x1 − x2| − r. (14)

This constraint maintains a distance r from two particles with positions x1 and x2. Using

Equation 11, the penalty forces for each x are

Fx1 = −k(|x1 − x2| − r)
x1 − x2

|x1 − x2|

Fx2 = k(|x1 − x2| − r)
x1 − x2

|x1 − x2|
.

(15)

These results match the intuitive geometric results calculated earlier. This can be taken a

step further with the discretization in Equation 13, of which

∆x1 = −w1k(|x1 − x2| − r)
x1 − x2

|x1 − x2|
∆t2

∆x2 = w2k(|x1 − x2| − r)
x1 − x2

|x1 − x2|
∆t2.

(16)

(Detailed derivation available in Appendix B)

3.2 Damping

Another major part of PCs is damping. Much like in real life, springs are affected

by internal frictional forces that causes them to lose energy with time. This artificially

induced energy loss can help prevent the system from becoming unstable. Typically, a

damping force, Dj, is proportional to the velocity (Adams). Since this is the damping for

a constraint, the respective velocity will be of the constraint itself (the rate of which the

constraint contracts/extends). This is denoted mathematically as vCj
= Ċj. Hence, Dj can

be rewritten with an arbitrary damping constant, µ, as

Dj = µĊj. (17)

14



Next, to calculate how the constraint will behave with damping, the penalty forces with

damping must be derived. Similar to Section 3.1, a potential energy function will be required.

Let the function FCj
= −kCj − Dj, where −kCj is the force of the constraint and −Dj is

the damping force opposing the constraint (hence the negative), and by calculating the

corresponding energy function,

ECj
=

Cj∫
0

FCj
· dCj =

Cj∫
0

(−kCj − µĊj) · dCj.

Expanding the integral gives

=

Cj∫
0

−kCj · dCj −
Cj∫

0

µĊj · dCj

=

Cj∫
0

−kCj · dCj −
Cj∫

0

µ
dCj
dt
· dCj,

and by evaluating,

= −1

2
kCj · Cj

∣∣∣∣Cj

0

− µ
dCj
dt
· Cj
∣∣∣∣Cj

0

ECj
= −1

2
kCj · Cj − µ

dCj
dt
· Cj. (18)

Now the individual forces can be found from Equation 18, the energy function. Recall

Equation 11,

Fxi =
∂E

∂xi
.

Therefore,

Fxi =
∂

∂xi

(
−1

2
kCj · Cj − µ

dCj
dt
· Cj
)

=
∂

∂xi

(
−1

2
kCj · Cj

)
− ∂

∂xi

(
µ
dCj
dt
· Cj
)
. (19)
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Next, the end term ∂
∂xi

(µ
dCj

dt
· Cj) can be broken down with the product rule to

µ

(
∂

∂xi

dCj
dt
· Cj +

dCj
dt
· ∂Cj
∂xi

)
.

Performing a swap and factor then yields

µ

(
d

dt

∂Cj
∂xi
· Cj +

dCj
dt
· ∂Cj
∂xi

)
= µ

∂Cj
∂xi

(
d

dt
· Cj +

dCj
dt

)
.

Finally simplifying to

2µ
∂Cj
∂xi
· dCj
dt

. (20)

Now, substituting back and continuing with Equation 19 gives

Fxi = −kCj ·
∂Cj
∂xi
− 2µ

∂Cj
∂xi
· dCj
dt

Fxi =

(
−kCj − 2µ

dCj
dt

)
· ∂Cj
∂xi

, (21)

and because µ is an arbitrary damping constant, 2µ can be condensed into µ. Further

simplification yields similar results as Witkin, where

Fxi = (−kCj − µĊj) ·
∂Cj
∂xi

. (22)

Lastly, using the previous method, the force from Equation 22 is discretized to calculate

the position. Given ai = wiFxi and ∆xi = ai∆t
2, then

∆xi = wi(−kCj − µĊj) ·
∂Cj
∂xi

∆t2. (23)

Equation 23 is the final equation for penalty constraints, which take into account damping.

When the damping constant is 0, Equation 23 decomposes into Equation 13. Once again,

applying the results on the constraint function Cj(x1, x2) = |x1 − x2| − r yields the new set
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of equations,

∆x1 = w1

(
−k(|x1 − x2| − r)− µ

(v1 − v2) · (x1 − x2)

|x1 − x2|

)
· x1 − x2

|x1 − x2|
∆t2

∆x2 = −w2

(
−k(|x1 − x2| − r)− µ

(v1 − v2) · (x1 − x2)

|x1 − x2|

)
· x1 − x2

|x1 − x2|
∆t2.

(24)

(Detailed derivation available in Appendix B)

3.3 Programmatic Implementation and Analysis

For later analysis and mathematical verification, Equations 24 are implemented pro-

grammatically. (Code and demonstration available in Appendix A)

Algorithm 2 Penalty Constraint Algorithm - applyPenaltyConstraints()

1: //loop through all constraint solving iterations
2: for k ← 0 to constraintSolvingIterationNumber do
3: //Iterative Gauss-Seidel step for each constraint
4: for all Cj ∈ C do
5: // Calculate Penalty Forces
6: force← calculateForce()
7: //Discretize force to find displacement
8: ∆x← force ·∆t
9: // Apply displacement
10: x← x+ ∆x
11: end for
12: end for

3.3.1 Inconsistent Stiffness

Inconsistent stiffness is the first problem with the iterative Gauss-Seidel algorithm (Sec-

tion 2.2.3). As described in Algorithm 1, the iterationNumberPerFrame can be increased

to solve the system multiple times every frame. Increasing the iterationNumberPerFrame

can speed up system convergence as the error is multiplied by pk, where k is the iteration

number (Section 2.2.3). Unfortunately, speeding up system convergence also alters con-

straint stiffness (Macklin). This dependence results in arbitrary stiffness units, resulting
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in an unsuitable method for realistic physical modelling. To negate this issue, the iterative

solver can be replaced with a global solver that directly computes the solution, which ignores

any convergence errors (Witkin).

Figure 6: PC stiffness behaviour for different iterations (the uniform red colour is due to the
high forces on the constraints with a stiffness of 100000)

It is observed in Figure 6 that more iterations result in higher stiffness. This is because

the convergence error from the Gauss-Seidel algorithm is reduced with more iterations. More

iterations also cause constraint penalty force displacements to multiply, behaving as if it was

a larger displacement caused by larger stiffness (Figure 7).

Figure 7: Increased PC stiffness with iteration number

However, using iterationNumberPerFrame as a means to increase stiffness can be more

stable than simply increasing k. Smaller iterative steps can help combat overshoot for large

18



stiffness values, as demonstrated in Figure 8.

Figure 8: Induced PC stiffness stability for increased iteration number

For effective rigid systems, it is important to find an empirical balance of k, ∆t, and

iterationNumberPerFrame.

3.3.2 Convergence and Energy Conservation

Convergence and energy conservation are also key concepts of physical modelling. Incon-

sistencies in the energy conservation could result in unrealistic physical models. Ideal PCs

do not converge; instead, they oscillate like a spring between different stable states about

C(q) = 0 (Goldstein). Just like how a pendulum will stay forever swinging without energy

loss, convergence to a static equilibrium is only induced when damping causes a energy loss

within the system.
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Figure 9: Stable oscillatory behaviour vs convergent behaviour

Overall system convergence is dependent on the Gauss-Seidel solver. Generally, the larger

the system, the longer it takes to converge. As discussed in Section 2.2.3, increasing the

iterationNumberPerFrame increases the system convergence rate. However, ideal systems

with no damping still seem to lose energy with time, with the rate being influenced by

∆t. Increasing ∆t increases the error from the semi-implicit Euler algorithm by O(∆t3)

(Section 2.2.1). The truncated error behaves as an energy deficit and leads to faster energy

loss. Similarly, if the system is large, individual constraint errors will accumulate, leading to

greater energy dissipation. Larger penalty forces can also induce greater errors during the

force discretization, ∆xi = wiFi∆t
2 (of which ∆t also plays a role). This issue is verified

with a simple pendulum simulation. The graphs in Figure 10 represent the y-position of the

swinging mass through time. (Raw data available in Appendix A)
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Figure 10: y-position vs time graphs of PC pendulum systems for different ∆t
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In contrast, systems can also be unstable and divergent, where the system gains energy

and explodes out of control.

Figure 11: PC divergence at ∆t = 0.008

Divergent behaviour is caused by overestimation from the semi-implicit Euler algorithm.

Divergence can be resisted with the inclusion of damping, where damping provides a buffer

for overshoot. Moreover, divergence can be minimized by increasing the iteration count while

lowering the forces (ex. gravity, k), or decreasing ∆t.

4 Relaxed Geometric Constraints (RGC)

4.1 Explanation and Generalization

RGCs approximate the true constraint path by solving the constraint geometrically.

Visually, it skips all the energy derivations and it appears that the “tense” constraint is

moved (relaxed) to its ideal form. The “relaxation” of this method refers to the projection

of the current positions to the next closest legal positions such that the constraint function

is satisfied. Once again, a straightforward geometric derivation of a simple case is presented

below in Figure 12.
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Figure 12: RGC Stretch Constraint

Where r is the ideal length and |x1 − x2| is the current length. If p1 and p2 have the same

mass, both will move the same amount to reach the ideal position. Therefore,

|∆x1| = |∆x2| =
1

2
(|x1 − x2| − r).

Intuitively, the contraction will be collinear with x1 − x2. Hence, the final contraction must

be scaled with the directional unit vector,

∆x1 = −1

2
(|x1 − x2| − r)

x1 − x2

|x1 − x2|

∆x2 =
1

2
(|x1 − x2| − r)

x1 − x2

|x1 − x2|
.

(25)

Equations 23 will be verified later with rigorous mathematical derivation. For now, it pro-

vides a general idea of RGCs.

As previously mentioned, RGCs are purely position-based (ignores force and energy),

which offers more control. But as a result, extra caution is needed to conserve realistic

physical meaning. For an accurate physical model, the system’s linear momentum and
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angular momentum must be conserved. In physics, this is represented by

n∑
i

mi∆xi and
n∑
i

ri ×∆xi. (26)

Where ri is the distance to some common rotation center of the whole particle system and

xi is the position value of a particle, pi. They will be useful for providing the necessary

information to calculate the final relaxation. The RGC process begins by setting up the

system to be solved for a single constraint Cj, which is

q′j,1 = qj,1 + ∆qj,1

q′j,2 = qj,2 + ∆qj,2

...

q′j,n = qj,n + ∆qj,n,

such that each ∆qj moves qj into a legal position for Cj,

Cj(qj) = 0 and Cj(qj + ∆qj) = 0. (27)

The goal for a constraint Cj is to calculate ∆qj to find qj + ∆qj. The set of qj can

be specified further because some values qj,i ∈ qj, do not change. Namely, the mass and

radius of each particle will remain constant, hence they will not need to be solved for.

For this essay, the only changing values of particle pi will only be the position, xi (v, a, F

are disregarded because RGCs are position based). Therefore, the list qj can be further

simplified into qj = [xa xb xc ... ]T . Where x is the list of all positions [x1 x2 ... xn], and

xa, xb, xc ... ∈ x. Solving for ∆qj is difficult because Cj is a nonlinear function, so Cj is first

approximated using local linearization (Bender). This method is an extension of Newton’s

method of finding roots. Newton’s method states for a initial point x0, displacement h, and
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function f(x),

f(x0 + h) = f(x0) + hf ′(x0) +O(h2).

The vector-valued function equivalent of f ′(x0) is the gradient ∇x0C(x0), which essentially

describes the slope of C(x0) at the point x0. And with f(x) = Cj(qj) and h = ∆qj,

Cj(qj + ∆qj) = Cj(qj) +∇(qj)C(qj) ·∆x+O(∆q2
j ) = 0. (28)

The error term O(∆q2
j ) is caused by the truncation of higher degree derivatives, much like

Euler’s algorithm in Section 2.2.1. The erroneous displacements resulting from this error

leads to energy loss and inaccurate results. To simplify the equation, the error term can be

ignored, resulting in an approximation of

Cj(qj) +∇qjCj(qj)
T ·∆qj ≈ 0. (29)

Equation 29 needs to be solved to find ∆qj, but it is currently underdetermined. This

indicates there must be another relationship of ∆qj. The previously discussed conservation

of linear momentum (Equation 26) can be used to limit the possible values of ∆qj. Using

the conservation of linear momentum, ∆qj must be in the same direction as ∇qjCj(qj) or

else extra directions will be introduced. Therefore, ∆qj will be a scalar multiple of the vector

∇qjCj(qj). Now, ∆qj is rewritten as

∆qj = λ∇qjCj(qj)
T . (30)

Where λ is the extension factor (relaxation factor). However, the above relationship for ∆qj

is only true for particles of same mass. When different masses are introduced, the scaling will

be different as massive particles are harder to move compared to lighter particles. The next

step will calculate the mass-scaling relationship from the laws of conservation of momentum.
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Recall,
n∑
i

mi∆xi = 0.

Systems with constant mass, m, behave such that,

n∑
i

m∆xi = 0.

Dividing both sides by m,
n∑
i

∆xi = 0.

To achieve the same effect for a system with different masses, each ∆xi is multiplied with

its reciprocal mass 1/mi (denoted as wi) of that same particle pi,

n∑
i

mi
1

mi

·∆xi = 0→
n∑
i

∆xi = 0. (31)

Similarly, for angular momentum,

n∑
i

ri × (mi
1

mi

·∆xi) = 0→
n∑
i

ri ×∆xi = 0. (32)

And because qj ∈ x,
n∑
i

∆qj,i = 0 and
n∑
i

ri ×∆qj,i = 0

Hence Equation 32 can be modified to include the mass scaling:

qj = [w1qj,1 w2qj,2 ... wnqj,n]T

=



wj,1 0 0 0

0 wj,2 0 0

0 0
. . . 0

0 0 0 wj,4





qj,1

qj,2

...

qj,3


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∴ ∆qj = λWj∇qjCj(qj)
T . (33)

Where Wj is the corresponding inverse diagonal mass matrix M−1
j of the set qj. Using this

equation, λ can be derived.

The goal is to find λ such that Cj(qj)+∇qjCj(qj)
T ·∆qj ≈ 0 (Equation 29). Substituting

with Equation 33,

Cj(qj) +∇qjCj(qj)
T · λWj∇qjCj(qj)

T ≈ 0. (34)

Since λ is a scalar value, it can be factored out and isolated, resulting in

λ = − Cj(qj)

∇qjCj(qj)
T ·Wj∇qjCj(qj)

T
. (35)

Substituting back into Equation 30,

∆qj = −Wj
Cj(qj)

∇qjCj(qj)
T ·Wj∇qjCj(qj)

∇qjCj(qj)
T . (36)

The resulting ∆qj is the vector that returns the change of all qj,i. To get a more use-

ful result, the function will be broken to each component of ∆qj,i. Firstly, ∇qjCj(qj)
T ·

Wj∇qjCj(qj)
T can be simplified further.

∇qjCj(qj)
T ·Wj∇qjCj(qj)

T = ∇qjCj(qj)Wj∇qjCj(qj)
T

=

[
∂

∂qj,1
Cj(qj)

∂
∂qj,2

Cj(qj) ... ∂
∂qj,n

Cj(qj)

]


wj,1 0 0 0

0 wj,2 0 0

0 0
. . . 0

0 0 0 wj,4





∂
∂qj,1

Cj(qj)

∂
∂qj,2

Cj(qj)

...

∂
∂qj,n

Cj(qj)


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=

[
∂

∂qj,1
Cj(qj)wj,1

∂
∂qj,2

Cj(qj)wj,2 ... ∂
∂qj,n

Cj(qj)wj,n

]


∂
∂qj,1

Cj(qj)

∂
∂qj,2

Cj(qj)

...

∂
∂qj,n

Cj(qj)


= wj,1

(
∂

∂qj,1
Cj(qj)

)2

+ wj,2

(
∂

∂qj,2
Cj(qj)

)2

+ · · ·+ wj,n

(
∂

∂qj,n
Cj(qj)

)2

=
n∑
u

wj,u[∇qj,uCj(qj) · ∇qj,uCj(qj)]. (37)

To clarify, the notation ∇qj,iCj(qj) is the term of ∇qj,iCj(qj) corresponding to qj,i. Substi-

tuting back to Equation 36 and expanding yields,

∆qj = −



wj,1 0 0 0

0 wj,2 0 0

0 0
. . . 0

0 0 0 wj,4


Cj(qj)

n∑
u

wj,u[∇qj,uCj(qj) · ∇qj,uCj(qj)]



∂
∂qj,1

Cj(qj)

∂
∂qj,2

Cj(qj)

...

∂
∂qj,n

Cj(qj)



= -



wj,1
Cj(qj)

n∑
u
wj,u[∇qj,uCj(qj)·∇qj,uCj(qj)]

∂
∂qj,1

Cj(qj)

wj,2
Cj(qj)

n∑
u
wj,u[∇qj,uCj(qj)·∇qj,uCj(qj)]

∂
∂qj,2

C(x)

...

wj,n
Cj(qj)

n∑
u
wj,u[∇qj,uCj(qj)·∇qj,uCj(qj)]

∂
∂qj,n

Cj(qj)


.

Hence for each qj,i,

∆qj,i = −wj,i
Cj(qj)

n∑
u

wj,u[∇qj,kCj(qj) · ∇qj,kCj(qj)]
∇qj,iCj(qj). (38)
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Equation 38 is similar to the equation from Bender. It is important to note that Equation

38 does not contain a stiffness constant and only models perfectly rigid models (k → ∞).

Stiffness can introduced by multiplying ∆qj,i with a reduction factor sj (sj replaces k as the

new stiffness constant). Smaller values of sj will result in a more flexible system; conversely,

higher values of s result in stiffer systems. Hence, the final equation will be,

∆qj,i = −wj,isj
Cj(qj)

n∑
u

wj,u[∇qj,kCj(qj) · ∇qj,kCj(qj)]
∇qj,iCj(qj). (39)

To verify this result, it will be applied on C(x1, x2) = |x1−x2|− r (Figure 12), which results

in

∆x1 = −s w1

w1 + w2

(|x1 − x2| − r)
x1 − x2

|x1 − x2|

∆x2 = s
w2

w1 + w2

(|x1 − x2| − r)
x1 − x2

|x1 − x2|
.

(40)

This result looks similar to the one derived using PCs, with PCs having extra ∆t terms,

and RGCs having extra mass-scaling terms. The derived results for RGCs will also be

programmatically implemented.

4.2 Damping

Much like PCs, damping on RGCs can also resolve divergence issues while adding a layer

of realism onto the physics simulation itself. Sadly, constraint damping of rigid position-based

constraints is impossible (Nealen). Damping depends on the movement of Cj(qj) about 0,

and since perfectly rigid constraints always satisfy Cj(qj) = 0, it cannot be affected by

constraint damping. The arbitrary stiffness value s is also impossible to quantify, causing

the exact damping forces to be unknown. Macklin’s XPBD paper resolved this issue by using

an energy-based approach to derive a compliant position-based constraint method. Their

technique is similar to a combination of penalty and relaxed geometric constraints. The only

method to introduce damping to the current RGC method is by applying a resistive force
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onto each particle individually.

4.3 Programmatic Implementation and Analysis

Since RGCs can directly find corrective displacements, it is easy to implement and suit-

able for the predictor-corrector scheme. (Code and demonstration available in Appendix A)

Algorithm 3 Relaxed Geometric Constraint Algorithm - applyRelaxedConstraints()

1: //loop through all constraint solving iterations
2: for k ← 0 to constraintSolvingIterationNumber do
3: //Iterative Gauss-Seidel step for each constraint
4: for all Cj ∈ C do
5: // Directly calculate displacement
6: ∆qj ← calculateDisplacement()
7: // Apply displacement
8: qj ← qj + ∆qj
9: end for
10: end for

4.3.1 Inconsistent Stiffness

The stiffness parameter, s, of Equation 38 is completely arbitrary. From experimentation,

constraints can behave springy with 0 < s < 0.5, and stiff with 1 < s < 1.1. When s > 1, the

system over-corrects and becomes more rigid, whereas for s < 1, the system under-corrects

and behaves more compliantly. It is important to note that the system has a high chance

of diverging for s > 1.3. Despite the theoretical rigidity for s = 1, the supposedly rigid

constraint still exhibits some compliance (Figure 13).

Figure 13: Compliance of a theoretically rigid beam with s = 1

30



It was observed that the constraintSolvingIterationNumber (Algorithm 3) significantly

affects the system’s stiffness. The reason for this behaviour is due to the repeated decrease

of the truncation error O(∆q2
j ) (Equation 28) as ∆qj is lowered every iteration.

Figure 14: The stiffness increases in a cloth simulation as constraintSolvingIterationNumber
increases

To resolve the lower stiffness for smaller values of constraintSolvingIterationNumber, the

stiffness factor, s, can be increased as compensation. However, the exact scaling will need

to be experimentally determined. Moreover, RGCs also exhibit different stiffness responses

with different ∆t (Figure 15).

Figure 15: The stiffness decrease in a cloth simulation as the timestep increases

The system is less stiff as the ∆t increases. The reason of this effect is due to the external

forces acting on each RGC (Forces are not internal as ∆t is not in Equation 38). In the

specific example shown in Figure 15, the particles are acted on by a gravity force. To apply

the gravity force, it must be discretized by ∆t (Equation 3). Larger values of ∆t impart

a larger displacement. Larger external displacements cause larger ∆qj compensation which
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increases the truncation error of the constraint (Equation 28), hence lowering the perceived

stiffness.

The inconsistent stiffness values undermine RGC’s credibility as a rigorous physics sim-

ulator, but as long as the initial parameters remain consistent, it can still simulate visually

realistic effects (Macklin).

4.3.2 Constraint Convergence and Energy Conservation

The conditions for the convergence and stability of RGCs coincide with the conditions

for PCs. Comparatively, RGCs are more stable because they are a position-based method.

But also as a result, RGCs neglect energy conservation. Moreover, the constraint error -

which is effected by ∆qj (Equation 28) - results in inconsistent system energies.

It is observed that the energy loss phenomenon is more apparent when the

constraintSolvingIterationNumber, csn, is higher. Increasing csn is equivalent to acceler-

ating the time to csn ·∆t. Therefore, the original error from 1 iteration will be stacked csn

times, resulting in greater energy loss. A larger ∆t also increases ∆qj and results in more

energy instability. This phenomenon is supported with a graphical analysis of an oscillating

RGC pendulum system (Raw data available in Appendix A).
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Figure 16: y-position vs time graphs of RGC pendulum systems at different ∆t

System convergence depends on the Gauss-Seidel solver (Section 2.2.3), meaning higher val-

ues of constraintSolvingIterationNumber result in faster convergence. Conversely, diver-
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gence can occur when the truncation error overshoots. Overshoot typically occurs when

a sudden external force is applied to the system (collisions and user interactions). Stiffer

systems with a larger s are also more likely to overshoot and diverge. Similarly, systems are

also more likely to diverge with larger values of constraintSolvingIterationNumber as any

overshoot will also be magnified constraintSolvingIterationNumber times. Typically, the

truncation error is more likely to cause undershoot, resulting in energy loss and convergence.

In general, RGCs are mainly effected by divergence when there are rapid, sudden, or large

movements.

5 Conclusion

With the improvement of computing technology, physical modelling has become a much

more prevalent field of study. Computational modelling has opened a new perspective of

how humans perceive the world. This paper discussed modelling techniques of particle-

based systems with penalty (Equation 23) and relaxed geometric constraints (Equation 38).

Additionally, the system also utilizes a predictor-corrector semi-implicit Euler integration

algorithm with a local iterative solver (Algorithm 1). To summarize, penalty constraints

are force-based, energy conservative, and easily damped. Unfortunately, they also diverge

quickly for rigid systems and often require a large amounts of force penalties. On the other

hand, RGCs are easier to implement, more versatile, and can be more rigid. Disadvantages

of RGCs include their ∆t dependence and lack of energy conservation. As the final verdict,

RGCs are generally a better choice for modelling non-rigorous physics simulations. Whereas

PCs are suitable for modelling non-rigid physically accurate systems.

Only a small sample of the existing modelling techniques was discussed. With all the

different integration algorithms, system solvers, and constraint algorithms, the possible com-

binations are endless. A majority of the described techniques are rapidly evolving as technol-

ogy and understanding improves with time. In the modern world where physical modelling
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can encompass video game physics to highly technical engineering analysis, the field of com-

putational mathematics is a relevant and imperative subject. Some applications of RGCs

and PCs include structural modelling, stress analysis, animation, and interactive surgical

simulations (Bender). Further study of this area is recommended due to the limitations

imposed on this paper. Consequently, this paper was unable to analyze a major method

in the literature using differential maintained constraints (Witkin). Perhaps extensions to

higher dimensions along with specific analyses of different use cases would provide a more

comprehensive understanding of the subject. But arguably, the most important step is to

continuously experiment with new methods and resolve the current issues, elevating com-

puter modelling to the next stage.
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7 Appendix A: Additional Resources

All demonstrations are accessible on a modern computer browser (Google Chrome, Microsoft

Edge, Brave, Firefox, Safari is untested). The demonstrations implements the stretch con-

straint for both RGCs and PCs, where C(x1, x2) = |x1 − x2| − r.

Main webpage for all demonstrations and implementations: https://onlinedocumentatio

n.github.io/Math-EE/

All Source Codes: https://github.com/onlineDocumentation/Math-EE

Penalty Constraints demo: https://onlinedocumentation.github.io/Math-EE/Math-E

E-Penalty-Constraints/index.html

Penalty Constraints Source Code: https://github.com/onlineDocumentation/Math-EE

/tree/main/Math-EE-Penalty-Constraints

Relaxed Geometric Constraints demo: https://onlinedocumentation.github.io/Math

-EE/Math-EE-Relaxed-Geometric-Constraints/index.html

Relaxed Geometric Constraints Source Code: https://github.com/onlineDocumentati

on/Math-EE/tree/main/Math-EE-Relaxed-Geometric-Constraints

Raw Data for Pendulum Graphs: https://onlinedocumentation.github.io/Math-EE/

pendulumdata.html
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8 Appendix B: Detailed Calculations

8.1 Detailed PC Stretch Constraint Derivation

8.1.1 Part 1: No damping

Given Cj(x1, x2) = |x1 − x2| − r =
√

(x1 − x2) · (x1 − x2)− r

Fx1 =
∂E

∂x1

= −kCj ·
∂Cj
∂x1

Fx2 =
∂E

∂x2

= −kCj ·
∂Cj
∂x2

.

First, solving for
∂Cj

∂x1
by using the chain rule then product rule

∂Cj
∂x1

=
1

2
√

(x1 − x2) · (x1 − x2)
((1− 0)(x1 − x2) + (x1 − x2)(1− 0))

=
2(x1 − x2)

2
√

(x1 − x2) · (x1 − x2)

=
x1 − x2

|x1 − x2|
.

Combining yields,

Fx1 = −k(|x1 − x2| − r) ·
x1 − x2

|x1 − x2|

Similarly,

∂C

∂x2

=
1

2
√

(x1 − x2) · (x1 − x2)
((0− 1)(x1 − x2) + (x1 − x2)(0− 1))

= − x1 − x2

|x1 − x2|

Fx2 = k(|x1 − x2| − r) ·
x1 − x2

|x1 − x2|
.
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8.1.2 Part 2: With damping

Penalty force discretization with damping, extending from Section 7.1.1

∆xi = wi(−kCj − µĊj) ·
∂Cj
∂xi

∆t2

First calculating Ċj, where

Ċj =
d

dt
(
√

(x1 − x2) · (x1 − x2)− r)

=
1

2
√

(x1 − x2) · (x1 − x2)

[(
dx1

dt
− dx2

dt

)
· (x1 − x2) + (x1 − x2) ·

(
dx1

dt
− dx2

dt

)]
.

Of which dxi
dt

is the velocity of xi, vi. Replacing results in,

=
2(v1 − v2) · (x1 − x2)

2
√

(x1 − x2) · (x1 − x2)

=
(v1 − v2) · (x1 − x2)

|x1 − x2|
.

Combining all the components from part 1 and part 2 give,

∆x1 = w1

(
−k(|x1 − x2| − r)− µ

(v1 − v2) · (x1 − x2)

|x1 − x2|

)
· x1 − x2

|x1 − x2|
∆t2

∆x2 = −w2

(
−k(|x1 − x2| − r)− µ

(v1 − v2) · (x1 − x2)

|x1 − x2|

)
· x1 − x2

|x1 − x2|
∆t2.

8.2 Detailed RGC Stretch Constraint Derivation

Given Cj(x1, x2) = |x1 − x2| − r =
√

(x1 − x2) · (x1 − x2)− r

∆qj,i = −wj,isj
Cj(qj)

n∑
u

wj,u[∇qj,kCj(qj) · ∇qj,kCj(qj)]
∇qj,iCj(qj).
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qj = [x1 x2]T , therefore qj,1 = x1 and qj,2 = x2. Using the above equation yields,

∆x1 = −w1s
Cj(qj)

n∑
u

wj,u[∇xuCj(qj) · ∇qj,uCj(qj)]
∇x1Cj(qj)

∆x2 = −w2s
Cj(qj)

n∑
u

wj,u[∇qj,uCj(qj) · ∇qj,uCj(qj)]
∇x2Cj(qj).

Next, each section is solved by steps. First, ∇xiCj(qj) is calculated for x1 and x2,

∇qj,1Cj(qj) = 1− 0 = 1

∇qj,2Cj(qj) = 0− 1 = −1.

Then, the denominator
n∑
u

wj,u[∇xuCj(qj) · ∇qj,uCj(qj)] is simplified to,

n∑
u

wj,u[∇xuCj(qj) · ∇qj,uCj(qj)] = w1 · 1 + w2 · 1 = w1 + w2.

Lastly, substituting each component yields,

∆x1 = −s w1

w1 + w2

(|x1 − x2| − r)
x1 − x2

|x1 − x2|

∆x2 = s
w2

w1 + w2

(|x1 − x2| − r)
x1 − x2

|x1 − x2|
.
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